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Theory of chiral modulations and fluctuations in smecticA liquid crystals under an electric field
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Chiral liquid crystals often exhibit periodic modulations in the molecular director; in particular, thin films of
the smectic=* phase show a chiral striped texture. Here, we investigate whether similar chiral modulations
can occur in thanducedmolecular tilt of the smectié phase under an applied electric field. Using both
continuum elastic theory and lattice simulations, we find that the state of uniform induced tilt can become
unstable when the system approaches the smAet@mecticC* transition or when a high electric field is
applied. Beyond that instability point, the system develops chiral stripes in the tilt, which induce corresponding
ripples in the smectic layers. The modulation persists up to an upper critical electric field and then disappears.
Furthermore, even in the uniform state, the system shows chiral fluctuations, including both incipient chiral
stripes and localized chiral vortices. We compare these predictions with observed chiral modulations and
fluctuations in smectié liquid crystals.

PACS numbd(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION plied electric field. Naively, there are two possible answers
to that question. First, we might say that the smeétighase
Molecular chirality leads to the formation of many types under an electric field has the same structure as the smectic-
of modulated structures in liquid crystdlk]. On a molecular C* phase, because they both have order in the molecular tilt.
length scale, the fundamental reason for these modulations isdeed, under an electric field there is not necessarily a phase
that chiral molecules do not pack parallel to their neighborsfransition between smectis-andC* phaseq8,9]. Thus, we
but rather at a slight twist angle with respect to their neigh-might argue that the smect&k-phase under an electric field
bors. On a more macroscopic length scale, molecular chirashould have in-plane chiral modulations of the form shown
ity leads to a continuum free energy that favors a finite twistin Fig. 1, just as the smectic* phase does. On the other
in the director field. This favored twist leads to bulk three-hand, the applied electric field itself breaks rotational sym-
dimensional phases with a uniform twist in the molecularmetry in the smectic layer plane, and hence it favors a par-
director, such as the cholesteric phase and the sm@ttic- ticular orientation of the molecular director. Any modulation
phase. It also leads to more complex phases with periodim the director away from that favored orientation costs en-
arrays of defects, such as the twist-grain-boundary phasesergy. For that reason, we might argue that the smefktic-
In this paper, we consider the possibility of a new type ofphase under an electric field shouttt have any chiral
chiral modulation in liquid crystals. The smec#icphase of modulations. Because these two naive arguments contradict
chiral molecules is known to exhibit the electroclinic effect:

an applied electric field in the smectic layer plane induces a PR .y
molecular tilt[2]. This induced tilt is generally assumed to - A e e AT
be uniform in both magnitude and direction. Here, we inves- aladia i Al NN A S
tigate whether the uniform electroclinic effect can become R g N R 2 S
unstable to the formation of a chiral modulation within the e ” v . a R -
layer plane. There are three motivations for examining this = =
possibility—one theoretical and two experimental. TR A AT s (A

(i) Theory The main theoretical motivation for examining y|—=—+~ ¢ = a4 . -« =" " 7 = a wa - =
this possibility is that thin films of chiral liquid crystals in the P P v e AT T oa o -
smecticC* phase show chiral modulations within the layer
plane. These modulations have been observed in polarization | ™77 7 = & * = =77 7 = & « =+
micrographs of freely suspended film3], and have been tadidil AL PN di A O R
explained using continuum elastic thed—7]. In these R N 2P
modulations, the molecules form striped patterns of parallel v o v ov o Y
defect walls separating regions with the favored chiral twist il e
in the molecular director. Within the narrow defect walls, the X
magnitude of the molecular tilt is different from the favored |G 1. Ansatz for the chiral modulation of the molecular tilt in
value in the smectiG* phase. a layer of the smectié phase under an applied electric field. The

Given that in-plane chiral modulations occur in the arrows represent the projection of the molecular tilt into the layer
smectic€* phase, it is natural to ask whether analogousplane. The electric field is applied in tyalirection, and the average
modulations can occur in the smecficphase under an ap- molecular tilt is in thex direction.
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(a) sistent with x-ray scattering from stripes in 2m cells,
E o Z ] which do not have the higher-order modulatid]. How-

i ever, this model does not explain the observed higher-order
modulation in thicker cells. So far, the only proposed expla-
nation of the higher-order modulation has been a second
layer buckling instability in surface regions near the front
and back boundaries of the cgll3]. In this paper, we will
consider whether chiral stripes can provide an alternative ex-
planation for this higher-order modulation. Such an explana-
tion seems at least initially plausible because the 15° skew
angle between the two observed modulations suggests a chi-
ral effect.

(iii) Experiment 2A separate experimental motivation for
considering chiral modulations in the smectigghase comes
from measurements of the circular dichrois@D), the dif-
ferential absorption of right- and left-handed circularly po-
larized light. Recent experiments have measured the CD
spectrum of KN125 in the smectis-phase[15]. When the
light propagates normal to the smectic layers, the CD signal
is undetectable. However, when the light propagates in the
smectic layer plane, in narrow cells as in Figa)2 the CD
signal is much larger, and it is quite sensitive to both electric
field and temperature in a nonmonotonic way. The measured
CD signal indicates that the liquid crystals must have some
the smecticA phase in narrow cellfrom Ref.[14]). (b) Polariza- chiral wist in the layer plane_. This (_:hlral twist might 3”5?
tion micrograph of the striped pattern in a & cell, showing the from a buII.< phenomenlonjelther _chlral modu!atlons or chi-
xz plane(with the line of sight along thg axis). Note that there are '@l fluctuations due to incipient chiral modulatiofis]. Al-
two distinct modulations with wavelengths of approximatelyaa  ternatively, it might arise from a surface phenomenon, such

and 4um, oriented at an angle of approximately 15° with respect to@S the surface electroclinic effgdt5]. Hence, we would like
each othelfrom Ref.[13]). to predict the bulk chiral modulations and fluctuations in the

smecticA phase as a function of electric field and tempera-

each other, we must do a more detailed calculation to deteture, and assess whether such effects can explain the CD
mine whether chiral modulations can occur in the smeatic- results.
phase under an electric field. Based on those three motivations, in this paper we pro-

(i) Experiment 1 Apart from these theoretical consider- pose a theory for chiral modulations and fluctuations in the
ations, striped modulations have been observed experimesmecticA phase under an applied electric field. This theory
tally in the smecticA phase under an applied electric field uses the same type of free energy that has earlier been used
[10,11. The experimental geometry is shown in Figa)2 to explain chiral stripes in the smeci@t phase[5—7], with
The chiral liquid crystal KN125 is placed in a narrow cell modifications appropriate for the smecficphase. We inves-
(2-25um wide), and an electric field is applied across thetigate this model using both continuum elastic theory and
width of the cell. One would expect the smectic layers tolattice Monte Carlo simulations. In continuum elastic theory,
have a uniform planar “bookshelf” alignment, with the layer we make an ansatz for the chiral modulation and insert this
normal aligned with the rubbing direction on the front andansatz into the free energy functional. By minimizing the
back surfaces of the cell. However, the layers actually form dree energy, we determine whether the induced molecular tilt
striped pattern, as shown in Figh. In the thicker cells, the is uniform or whether it is modulated in a chiral striped tex-
striped pattern is quite complex, with two distinct modula-ture. In the lattice Monte Carlo simulations, we allow the
tions superimposed on top of each oth#2,13. The main  system to relax into its ground state, which may be either
modulation has a wavelength of approximately twice the celuniform or modulated, without making any assumptions
thickness, while the higher-order modulation has a waveabout the form of the chiral modulation. Both calculations
length of approximately 4:m, regardless of cell thickness. show that the uniform state can become unstable when the
Furthermore, the higher-order modulation is oriented at demperature decreases toward the smektismecticC*
skew angle of approximately 15° with respect to the maintransition or when a high electric field is applied. Beyond
modulation, giving the whole pattern the appearance of dhat instability point, the system develops a chiral modula-
woven texture. tion in the molecular tilt, and this tilt modulation induces a

The main modulation in these cells has been explainedorresponding striped modulation in the shape of the smectic
theoretically as a layer buckling instability. When an electriclayers. This modulation is consistent with the higher-order
field is applied, the molecules tilt with respect to the smecticstripes observed in the smecticphase.
layers, and hence the layer thickness decreases. Because thdn addition to these theoretical results for the chiral modu-
system cannot generate additional layers during the experiation, we also consider chiral fluctuations that occur before
mental time scale, the layers buckle to fill up space. Thighe onset of the chiral modulation itself. The continuum elas-
model of layer buckling predicts layer profiles that are con-tic theory predicts the magnitude of the incipient chiral

A\

¥

FIG. 2. (a) Experimental geometry of the striped modulation in
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stripes as a function of both electric field and temperatureboth the uniform and modulated states. Suppose the electric
The lattice Monte Carlo simulations show the incipient chiralfield is in they direction,E= Ey, which favors a tilt in thex
Stripes as well as localized chiral vortices in the tilt direCtion.direction_ In a uniform state, the System has the electroclinic
These predicted fluctuations might be visible in future opti-4i\¢ c(x,y)=co>?. By comparison, in a modulated state, the

cal experiments. However, our predictions for these bu"%y:stem has a chiral striped pattern of the form shown in Fig.
_fluctuat|o_ns differ from the (.:D res_ults mentloned_ab{ﬁzﬁ]_ 1. Here, the tilt director is modulated about the average value
In some important _deta|ls, including the predominant d|rec-0f Co in the x direction. The magnitude of the tilt is larger
tion of the fluctuations and the dependence of the fluctuay on the it varies in the direction favored by molecular
tions on field a_nd tempgrature. Hence, those CD experlmemé,sl”uirality, and it is smaller when the tilt varies in the opposite
must be showing a chiral surface phenomenon, such as .o tion This chiral modulation can be represented math-

surface electroclinic effect. .
. ; ematically by the ansatz
The plan of this paper is as follows. In Sec. Il, we propose y by

the free energy and use continuum elastic theory to predict Cx(X,Y) =Co+ C1 COLUyX+TyY), (2a)
chiral modulations in the tilt and the layer shape. In Sec. Il
we work out the consequences of this theory for chiral fluc- Cy(X,y)=Cy Sin(QyX+qyy). (2b)

tuations in the uniform phase. In Sec. IV, we present the
lattice Monte Carlo simulations of chiral modulations and This ansatz has four variational parametegsgives the av-
fluctuations in this model. Finally, in Sec. V, we discuss theerage tilt,c; gives the amplitude of the modulation, aggd
results and compare them with experiments. andq, give the wave vector. Within this ansatz,=0 cor-
responds to the uniform state, ang# corresponds to the
modulated state. This is not the most general possible ansatz.
In general, thec, and ¢, components of the modulation
A. Tilt modulation might have different amplitudes, and might not be exactly
In this theory, we begin by considering a single smecticgoo out of phase. Furthermore, the mod_ulla}t!on rmght have
layer in thexy plane. Letc(x,y) be the tilt director, i.e., the mulUpIe.Founer cpmponents. Thege posglbllltles will be con-
projection of the three-dimensional molecular directorSidered in the lattice Monte Carlo simulations of Sec. IV. For
- ) now, this simple ansatz demonstrates the relevant physics of
n(>.<,y) into the layer plane. The free energy can then b&ne modulation.
written as To determine whether the optimum tilt director is uniform
1 1 A A or modulated, we insert the ansatz into the free energy and
F= J dA{—r|c|2+ —ulc*+bz-Exc—\|c]?z- VXc average over position. The resulting free energy per unit area
2 4 can be written as

II. CHIRAL MODULATIONS

1 1
- .02+ — 2 F 1 1 1 1
T Ks(V-07+ 5Ke(VX 0. @ —=_rci+ —rcf+ —ucj+ucici+ —uci—bEg,
A 2 2 4 4
Here, ther and u terms are the standard Ginzburg-Landau
expansion of the free energy in powersmfNear the tran-
sition from the smectié to smectic€ phase, we have o
=a(T—Tac). TheKgsandKg terms represent the Frank free Here,K =3 (Kg+K3g) is the mean Frank constant. Minimiz-
energy for splay and bend distortions of the director field,ing the free energy over, and dy gives
respectively. Thdo and\ terms are both chiral terms. Tloe

1 1
— NQyCoC2+ Equc§+ Eincf . (3)

term represents the interaction of the applied electric feld ACo
with the molecular director, and theterm gives the favored =" (4a)
variation in the director due to the chirality of the molecules.
. . - 2" . ~
(This term is written agc|“z- V X ¢ rather than jusg- VX c a,=0. (4b)

because the latter term is a total divergence, which integrates

to a constant depending only on the boundary conditions. Byhese expressions give the wave vector of the first unstable
contrast,|c|22-V><c is not a total divergence because themode of chiral modulation. Note that this wave vector is in
factor of |c|? couples variations in the magnitude ofwith  the x direction. This result is reasonable, because the chiral
variations in the orientationThis free energy is identical to stripes in the smectiG* phase also have the modulation
the free energy that has been used in studies of sm@ttic- wave vector parallel to the average tilt direction. Inserting
films [5—7], except for two small changes. First, we now takethese expressions back into the free energy gives the result
the coefficientr to be positive, which is appropriate for

smecticA films without spontaneous tilt order. Second, we F 1 2, 1 2, 1 iy A, 2, 1 4_pE

have added the electric field term, which gives induced tilta ~ 2"C0™ 5C1T zUCo™ | U= 57/ CoCy 7+ 7 UCy %,
q 2K

oraer. (5)

We can now ask what configuration of the tilt director
c(x,y) minimizes the free energy. In particular, is the opti- expressed in terms of the two parametegsandc;.
mum tilt director uniform or modulated? To answer this Note that this free energy is only thermodynamically
question, we make an ansatz fc(x,y) that can describe stable(bounded from beloyfor a certain range ok. The
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combination of theu and\ terms can be regarded as a qua- 2.0
dratic form in the variablesg and ci. The free energy is Uniform
thermodynamically stable only if this quadratic form is posi- 15
tive definite, which requirea.?<3Ku. If this condition is - EnaxM)
not satisfied, then the free energy must be stabilized either by 2
higher-order termgsuch as/c|®) not considered here or by 2 1017 Modulated
the constraintc|<1, which results from the fact thatis the 3
projection of the three-dimensional molecular directanto w 0.5 -
the layer plane. Uniform =
We can now find the minimum of the free energy with *
respect toc, and c;. The extrema of the free energy are 00 I I I
given by 1.8 2.0 2.2 2.4 2.6
Chiral coefficient A
2
i E =rco+ ucg+ 2( u— )\__> Coci— bE=0, (6a FIG. 3. Theoretical phase diagram in terms\o&ndE for fixed
dCo A 2 r=0.5u=1,b=1, andK=1.5, showing the uniform-modulated

transitions aE* (\) and E,,(\).

J F 2
oA rc,+ ucf+2 u— —_) cgcl=0. (6b) On the modulated side of the transition, the amplitude of the
! 2K chiral modulation increases as
One solution of these equations is the uniform electroclinic A2 312
state, in whichc;=0 andcy is given implicitly by :—2)
2_2b(E—E*) Ku 11

rco+ucg—bhE=0. (7) €1~ r 112,172 N2 N2 (12)

The question now is whether this solution is a minimum or a Ku Ku

saddle point of the free energy. If it is @ minimum, the uni- . L
. s ; X . Furthermore, the wave vector of the chiral modulation is
form state is stable; if it is a saddle point, the uniform state is
unstable to the formation of a chiral modulation. To answer N v2( \2 -12
this question, we calculate the Hessian matrix of second de- * 0 ( r) <_——2)

% Tk |k

m (12

rivatives at the uniform solution. The determinant of this
matrix is
on the modulated side of the transition.
A2 There is one more constraint on the uniform-modulated
r+2< u— —_) CS . (8)  transition that we have not considered yet. Because the tilt
2K directorc is the projection of the three-dimensional molecu-
. lar directorn into the layer plane, its magnitude is limited to
If the chiral coefficient\ is weak, with\®><2Ku, then the |c/<1. This constraint implies that there is an upper critical
determinant is always positive, implying that the uniform field E,,,, beyond which the director is locked at unit mag-

state is always stable. On the other hand\4f>2Ku, then  nitude in thex direction. From Eq(7), the upper critical field
the determinant can become negative, and the uniform staf@n be estimated as

can become unstable. In that case, the system has a second- 1

order transition from the uniform state to the modulated state Emax=b""(r+u). (13
when the determinant passes through zero. This transition

can be driven by increasing the electric field, which increase§ tem b " .
Co. It can also be driven by decreasing the temperature to2yStem becomes unitorm again. .
By combining the results derived above, we obtain a

L . " .
ward the smectix—smecticc* transition, which reduces phase diagram in terms of the electric fi&ldand the chiral

and increases,. gy S L
e _ . coefficient\, which is shown in Fig. 3. For large values)of
By combining Eqs(6)~(8), we can calculate properties of he system has a transition from the uniform state to the

the uniform and modulated states around the transition. Firs{ ; . X
the transition occurs at the electric figit given by rhodulated state at the fiel, and then it goes back into the

uniform state at the fiel& .. At )\2~E(r +2u), these two

g 9? F) 43y
e 76,¢, a =[r+3ucg]

2 -3/ 2 transitions intersect. Below that value ®f the system re-
E*=p 132,12 :—2) :—1)_ (9)  mains in the uniform state for all electric fields, with no
Ku Ku modulated state.
On the uniform side of the transition, the tilt is B. Layer Modulation
F112) \2 -1/2 So far, we have considered only modulations in the tilt
c :(_> :_2) (100  director in aflat smectic layer. However, a recent theory of
u Ku the P4 rippled phases of lipid membranes shows that any
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modulation in the tilt director will induce a modulation in the (a)
curvature of the membrangl7,18. The same theoretical 24
considerations that apply to modulations in lipid membranes
also apply to smectic layers in thermotropic liquid crystals
[19]. Hence, we can carry over these theoretical results to
predict the curvature modulation induced by the chiral
stripes in the smectié- phase. Leth be the height of the
smectic layer above a flat reference plane. The results of
Refs.[17,18 then predict

h(x) (arb. units)
o
|

d2h Y dCX )\HP -2 4
S ax T e S (14) T T |
dx K X K
0 5 10 15
for a modulation in thex direction. Here is the curvature x (arb. units)

modulus of the layery is the nonchiral coupling between tilt
and curvature, andyp is the chiral coupling[20]. After
inserting the tilt modulation of Eq2), with g,=0 as found
above, we can integrate this differential equation to obtain
the curvature modulation

m

C;  AnpCoC ApypC2 z

h(x)= E—Lgl iNQg,X— i leianXx. '_E,
KOx KO X '(%

(15 ~

The most important feature to notice about this modulation is

that it includes both sigx and sin Z,x terms. As a result,

the layer profile has the shape shown in Figa)4with a

highly exaggerated amplituge This modulation has the 0 5 10 15

symmetryCY)—it has a twofold rotational symmetry, but it

does not have a reflection symmetry in the or yz plane

because of the chiral couplingp. FIG. 4. (a) Profile of the height modulation of a single smectic
Although our model applies only to a single smectic layer,layer, showing theCY’ symmetry. The vertical displacement is

the symmetry of the modulation gives some informationhighly exaggerated(b) The most efficient packing of multiple

about the packing of multiple smectic layers. Because @mectic layers with a modulation of this symmetry. The dashed

single layer does not have a reflection symmetry intp@r lines indicate the orientation of the stripes in tteplane.

yz plane, the packing of multiple layers should not have such

a symmetry either. Instead, the most efficient packing ofal fluctuations. The simplest possibility is just the chiral

multiple layers should have the form shown in Fighyt  contribution to the free energy of E¢B):

with a series of sawtooth-type waves stacked obliquely on

top of each other. For that reason, this chiral instability F chira= — AGxCoC (16)

should lead to oblique stripes, which are not parallel to the

average layer normal along tkexis. The three-dimensional An alternative possibility is suggested by a recent model for

wave vector therefore hasgy component as well as @, the transition between the isotropic phase and the blue phase

component. This inclination of the stripes gives a macro4|| [21]. This work proposed the chiral order parameter
scopic manifestation of the chiral mechanism that generates

the stripes. ¥=Q-VXQ=¢€;x Qi 9;Qu, (17)

x (arb. units)

1. CHIRAL FLUCTUATIONS whereQ;; =n;n;— 3 &; is the tensor representing nematic or-

At this point, let us return to the problem of tilt variations der. In our problem, the three-dimensional nematic director
in a single smectic layer. In the previous section, we showegan be written as
that a chiral instability can give a periodic modulation in the
molecular tilt. Even if the system does not have a periodic ﬁ%c+(1—%|c|2)i, (18
chiral modulation,it can still have chirafluctuationsabout a
uniform ground state—i.e.¢;-type fluctuations about the znd hence the tensor becomes
uniform electroclinic tiltcy. Such fluctuations can have an

important effect on the optical properties of the system. For 2.1 ce c
that reason, in this section we investigate the theoretical pre- Cx—3 Xy X
dictions for gh|ral fI.uctugnons in the unlform phase_. Qi=| oy Ci_% cy _ (19)
The first issue in this calculation is to determine what .
2

quantity gives an appropriate measure of the strength of chi- Cyx C, 5—cy—cC
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Into this expression we insert the ansatz of E).for the
fluctuations, withq,=0. After averaging over position, the
chiral order parameter simplifies to

= —0CoC] . (20)

Remarkably, this result for the chiral order parameter is y |3
equivalent to the expression féi,;5, Up to a constant fac-
tor. This equivalence shows that either expression can be
used as a measure of the strength of chiral fluctuations.

We can now calculate the expectation value of the chiral
fluctuations. Applying the equipartition theorem to the free
energy of Eq(5) gives

kgTA?c3 X

F chiral ) == —. 21
<| Ch'ra||> Kr—()\2—2uK)Cg @D FIG. 5. Simulation results for the molecular tilt in a layer of the

smecticA phase, showing a chiral modulation for the parameters
r=0.5u=1,b=1, K= 1.5,A=2.4, andE=0.4. The lines repre-
For low fields, we have,=bE/r. Furthermore, we have  sent the projection of the molecular tilt into the layer plane. The
=a(T—Tpc) near the smectid—smecticE transition. Un-  applied electric field is in thg direction.
der those circumstances, the expectation value becomes

1 1 -
F=> |5rlg?+ > u|g|*+bz-EXg
ke TAZ2E? r 12 4
<|Fchiral|>:— 3 3 2 TN 2=2 " (22) 2 2
— —(\2=— 2 Gl“tHI|C|“\ ~ ~
Kad(T—Tac)®— (A2~ 2uK)b%E L2y {_)\<| 1+l )z-ri,-x(cj—ci)
30D 2
This expression shows that the system has chiral fluctuations 1— 5
in the uniform state. The magnitude of the chiral fluctuations +5K(G=a)?|. (23

depends on both the applied electric field and the tempera-
ture. In particular, this measure of the chiral fluctuations be- . ) ) ) ) )
gins at(|F¢nal)=0 for zero field and increases as the ap-Here.rjj Is the unit vector between neighboring siteendj.

plied electric field increases. M>2Ku, then increasing the The factor of5 is required because of the hexagonal coordi-

field drives the system toward the uniform-modulated transiation of the lattice. This model is similar to a discretized

tion, where the magnitude of the fluctuations diverges othmodel for tilt modulations studied in the context of Langmuir
! ' onolayerq22].

erwise, increasing the field drives the system toward a finitd" ) . . L
mse, 1 nd ! v y W n We use a lattice of 100100 sites with periodic boundary

asymptotic value of the chiral fluctuations. - ,
ymp conditions. We fix the parameters=0.5,u=1,b=1, and

K=1.5, and vary the chiral coefficient and the strength of
IV. MONTE CARLO SIMULATIONS the electric fielde in they direction. For each set of andE,
we begin the simulations at a high temperature, with all the
To inVeStigate further this model for chiral modulations directors Ci:O, Corresponding to an untilted smechic-
and fluctuations, we have done a series of Monte Carlo simuphase_ We allow the system to come to equilibrium and then
lations. These simulations serve two main purposes. Firsjowly reduce the temperature, so that the system can find its
they allow the system to relax into its ground state, whichground state. This procedure can be regarded as a simulated-
may be either uniform or modulated, without the need forannealing minimization of the discretized free energy with a
any assumptions about the form of the chiral modulationfixed set of parameters. To refine the phase diagram further,
Hence, they provide a test of the assumed form of the chiradome simulations of the modulated phase were performed

modulation in Eq(2). Second, the simulations provide snap-sing system size 1004. The results are in close agreement
shots of the tilt director field for different values of the elec- yith those in the 108100 system, since the modulation is

tric field E and the chiral coefficient. Thus, they help inthe  ggsentially one dimensional.

visualization of the chiral modulations and fluctuations. Figure 5 shows the director configuration that forms in a
In the simulations, we represent the tilt director in a singlegynical run with \=2.4 andE=0.4. Here, the system has
smectic layer by a discretizecky model on a two- relaxed into a configuration of chiral stripes with wave vec-
dimensional hexagonal lattice. Each lattice Siteas a tilt  tor in the x direction, perpendicular to the electric field ap-
director ¢;_of variable magnitudec;|<1. We suppose that pjied in they direction. This configuration appears similar to
Ks=Kg=K. The discretized version of the free energy of the ansatz proposed in Fig. 1. The simulation results can be
Eq. (1) then becomes compared quantitatively with the predictions of continuum
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FIG. 6. Simulation results for the shape of(x): (&) Near a Chiral coefficient A

transition, forh =2.25 andE=1.48.(b) Well inside the modulated
state, forn =2.55 andE=0.2. Note that the modulation has a sinu-
soidal form in the first case, but not in the second.

FIG. 7. Simulation results for the phase diagram in terma of
andE for fixedr=0.5,u=1, b=1, andK=1.5. The symbols indi-
cate the observed transitions between the uniform and modulated

states. The discrepancy between this figure and Fig. 3 is due to the
elastic theory. For these parameters, E®). predicts E* discretization of the lattice.

~0.4 and Eq(13) predictsE,5»=1.5. Hence, the system is

quite close to the uniform-modulated transition B:E*  {hermodynamic ground state, the Monte Carlo simulations
and far fromEp,,. From Egs.(10) and (12), the average gjso allow us to observe chiral fluctuations in this model. As
value of the tilt should beg ~0.5 and the modulation wave noted above, the simulation procedure involves beginning in
vector should bej; ~0.8, corresponding to a wavelength of a high-temperature disordered state, allowing the system to
2m/qgx ~8 lattice units. These predictions are approximatelycome to equilibrium, and then gradually reducing the tem-
consistent with the simulation results. perature to zero. If we interrupt the simulations at a nonzero

For a further comparison of the continuum elastic theorytemperature, before the system reaches the ground state, then
with the simulations, we can look at the shapecgix) as a  we can take a snapshot of the fluctuations. For example, Fig.
function ofx. The ansatz of Eq2) assumes that this is a sine 8 shows a snapshot of the simulations \at2.4 andE
wave with a single wave vectar, . In the simulation, the =0.2, which has been interrupted at temperaflire0.081.
modulation can take any shape, so we can assess whether thethe thermodynamic ground state given by the phase dia-
shape is actually sinusoidal. Figure 6 shows the shape of thgram, this system is uniform. At this finite temperature, the
modulation for two sets of parameters. In Figa)owe have uniform state shows chiral fluctuations, which take the form
A =2.25 andE=1.48, which is quite close t&,,,,~1.5. For  of incipient chiral stripes. These incipient chiral stripes show
these parameters, the amplitude of the modulation is vera specific realization of the chiral fluctuations discussed in
small, and the shape of the modulation is very well fit by aSec. Ill. As the field is increased, these fluctuations grow in
sine wave. By contrast, in Fig.() we havex=2.55 and magnitude and eventually become equilibrium stripes at
E=0.2, which is far from the transitions &* and E . E*(N).

Here, the amplitude of the modulation is much larger, and it In addition to the incipient chiral stripes, the model also
is clearly not sinusoidal. This comparison shows that theshows another type of chiral fluctuations, which are localized
theoretical assumption of a sinusoidal modulation is appro-
priate close to the transitions, where the modulation ampli-
tude is small, but it is not appropriate well inside the modu-
lated state, where the amplitude is large.

The simulation results for the phase diagram are summa-
rized in Fig. 7. Note that this phase diagram has the same
structure as the phase diagram predicted by continuum elas-
tic theory in Fig. 3. For large\, the system goes from the
uniform state to the modulated state at the electric fiid
The system remains in the modulated state up to the field
Emax, &t which point it goes back into the uniform state. As
\ decreases, the range of the modulated state in the phase
diagram decreases, and it finally vanishes\at2.14. For
smaller values ok, the system stays in the uniform state for
all values of the electric field. The numerical value of the
phase boundarf* (\) is shifted somewhat from the theo-
retical prediction. The difference can be attributed to the dis-
cretization of the system, which changes the free energy of
the modulated state by a few percent. This small change in FIG. 8. Finite-temperature simulation results for the parameters
the free energy is enough to give a noticeable shiE#i{\). r=0.5u=1,b=1,K=1.5\A=2.4, andE=0.2, showing incipient

In addition to these results for the phase diagram in thehiral stripes.

X
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smecticA phase of the chiral liquid crystal KN125 under an
applied electric field—a main modulation with a wavelength
of approximately twice the cell thickness and a higher-order
modulation with a wavelength of approximately.n, inde-
pendent of cell thickneddl2,13. The main modulation has
been explained as a layer buckling instability. Our model of
chiral stripes provides a possible explanation of the higher-
order modulation. In particular, it predicts the observed sym-
metry of the modulation—the observed skew angle between
the main stripes and the higher-order stripes in Figp) 2
corresponds to the theoretical packing angle in Fig).4
Furthermore, it predicts that the wavelength of the higher-
order modulation is determined by material properties of the
liquid crystal, not just by the cell thickness.

One possible objection to this model for the experiment is
that the observed stripe wavelength does not depend on elec-
FIG. 9. Finite-temperature simulation results for the parameterdric field, while the prediction of Eq4a) depends on electric

r=0.5,u=1,b=1, K=1.5A=2.4, andE=0, showing localized field implicitly through the uniform tiltc,. The response to
chiral vortices. this objection is that the stripe wavelength is not necessarily
in equilibrium. Rather, the stripe wavelength is probably de-
chiral vortices in the tilt director. Figure 9 shows an exampletermined by the wavelength at the onset of the instability and
of the vortices for=2.4 andE=0. These vortices seem to cannot change in response to further variations in electric
be forming an incipient hexagonal lattice. The vortex patterrfield. A second possible objection is that the predicted stripes
is a nonequilibrium fluctuation, which anneals into the uni-occur only close td ¢, while the observed stripes occur in
form state as the simulation temperature is decreased. Whéhe liquid crystal KN125, which does not have a smectic-
a small electric field is applied, the vortices are suppressedd—smecticE* transition. The response to that objection is
The field strength required to suppress vortices increases &at KN125 is an unusual liquid crystal with a large electro-
\ increases. This nonequilibrium vortex pattern is similar toclinic effect over a surprisingly wide range of temperature
the equilibrium hexagonal lattice of vortices that has beeri24]. For that reason, this material can show chiral stripes
predicted in theoretical studies of the chiral sme€ic- over awide range of temperature. A further test of the theory
phase[5-7]. The nonequilibrium vortex pattern probably Would be to see whether the higher-order stripes occur in a
evolves into the equilibrium vortex lattice ass decreased liquid crystal that has the standard temperature-dependent
from the smecticA phase into the smectic* phase, but we €lectroclinic effect neaf 5c and to see whether these stripes

X

have not yet tested this scenario in the simulations. are more sensitive to temperature. o _
The second experiment mentioned at the beginning of this
V. DISCUSSION paper measured the CD spectrum of KN125 in the sméctic-

phase under an applied electric fi¢ltb]. A very large CD

In the preceding sections, we have answered the theoregignal was found for light propagating in the smectic layer
ical question that motivated this study. Our model shows thaplane, much larger than the CD signal for light propagating
the smecticA phase under an applied electric field can be-normal to the smectic layers. This large CD signal indicates
come unstable to the formation of a chiral modulation withinthat the liquid crystals have some chiral twist in the smectic
the layer plane, which is similar to the chiral striped modu-layer plane. This twist might arise from a bulk phenomenon,
lation that has been observed in thin films of the sme€tic- such as the chiral fluctuations of the uniform smeétic-
phase. The transition from the uniform to the modulated statphase considered in this paper. Alternatively, it might arise
occurs when the temperature decreases towardor when  from a surface phenomenon, such as the surface electroclinic
a high electric field is applied. It is somewhat surprising thateffect.
an applied electric field can induce a modulation in the di- Although our model for chiral fluctuations in the uniform
rector away from the orientation favored by the field. How-smecticA phase gives one possible source for a CD signal
ever, an analogous effect has been predicted by a recetitat could be measured in optical experiments, our predic-
study of cholesteric liquid crystals in a fie]@3]. That the- tions differ from the experimental results in two important
oretical study showed that a high electric field can induce aletails. First, the predominant wave vector of the predicted
transition from a paranematic phase to a cholesteric phase, ghiral fluctuations is in the direction, perpendicular to the
which the director has a modulation away from the fieldelectric field. By contrast, the experiments are sensitive to
direction. In both that problem and our current problem, thechiral fluctuations in the direction, along the electric field,
transition between the uniform and modulated states is corbecause the light is propagating in that direction. Second, the
trolled by the competition between field-induced alignmenttheory predicts that the quantity{F;.), measuring the
and chiral variations in the orientation of the field-inducedstrength of chiral fluctuations, should be zero at zero field
order parameter. and should increase monotonically with increasing field. In

We can now compare this model with the two experimen-the experiments, the measured CD signal is nonzero at zero
tal results mentioned at the beginning of this paper. In thdield, and it can increase or decrease with increasing field,
first experiment, two types of stripes were observed in thelepending on the temperature. Thus, the experiment must be
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showing a chiral surface phenomenon. A specific modelThese theoretical results provide a possible explanation for
based on the surface electroclinic effect has been presentsttipes observed in the smec#icphase, and they predict
in Ref. [15]. The bulk chiral fluctuations discussed in this chiral fluctuations that may be observed in future optical
paper might be observable in future optical experiments, eexperiments.
pecially if the surface effects can be suppressed through ap-
propriate surface treatments.

In conclusion, we have shown that the uniform electro-
clinic effect in the smecti& phase of chiral liquid crystals We would like to thank D. W. Allender, A. E. Jacobs, F.
can become unstable to the formation of a chiral modulatiorC. MacKintosh, D. Mukamel, R. G. Petschek, and M. S.
in the layer plane. In the modulated state, there are stripes iBpector for helpful discussions. This work was supported
the orientation of the molecular director, analogous to théby the Office of Naval Research and the Naval Research
stripes that have been observed experimentally in thin flm&aboratory. R.L.B.S. acknowledges support from the Na-
of the smecticc* phase. The same mechanism also givestional Science Foundation Grant No. NSF DMR-9702234
chiral fluctuations in the uniform smectik-phase, which and the Donors of the Petroleum Research Fund, adminis-
grow in magnitude as the modulated state is approachedered by the American Chemical Society.
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